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NOLTR 73-191 28 September 1973

Computer Programs for the Analysis of Spacecraft Magnetism

During the past several years techniques huave been developed for measuring and
analyzing the magnetism of spacecraft., The techniques are directed, first, at
estimating the spacecraft's magnetic dipole moment and, second, at compensating *he
dipole moment to allow the spacecraft to maintain a stable orientation while in
orbit. This procedure requires accurate measurements of the magnetic field
emanating from the spacecraft. The Naval Ordnance Laboratory is currently involved
in the development of a facility to conduct sophisticated magnetic tests of space-
craft., The facility will contain instrumentation which will automatlcally record
and analyze the test data. This report has been published to document the
numerical techniques to be used in the analysis of the data. Techniques are also
described which can be used to predict the accuracy of different types of
measurement and analysis techniques.

The development and testing of the computer programs required a considerable
amount of effort. Mr., H, W. Korab contributed much to this effort, including the
development of the BASIC version of the analysis procedure. He also assisted in
the development of the illustrations included in this report.

This work was funded in part by the Spacecraft Technology Center of the Naval
Research Laboratory under task number NOL-786-G01-53.

ROBERT WILLIAMSON II
Captain, USN
Commander
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Chapter 1

INTRODUCTION

1. A major effort has been applied to the development of computer programs and
subprograms to assist in the analysis of satellite magnetism. The analysis is part
of a procedure directed at determining and compensating the magnetic dipole moment
of a satellite. The procedure involves four sieps. The firat step is to measure
the normal component of the satellite's magnetic field on the surface of a sphere
enclosing the satellite. The second step involves the spherical harmonlc analysis
of the measured data to determine the magnitude and the directicn of the satellite's
dipole moment, The third step is to attach an opposing dipole to the satell.te
with equal magnitude and opposite direction, The final step 1s to repeat the
measurement and analysis procedures to verify the compensation.

2. The five programs described in this report have been devised to perform a
variety of data analysis tasks. One of the programs is coded in the BASIC
computer language. The other four are coded in FORTRAN IV, The first three
programs are used to analyze data representing the normal component of the
magnetic fleld on the surface of a sphere enclosing the satellite., The fourth
program 1s used to generate simulated measurement data for a specified system of
multipole magnets. The program also allows the simulation of measurement errors.
The last progran is a combination of the data generation and the analysis
programs. The programs have been designed to allow a variety of options including:

a. Reading the input data from paper tape or from a data file

b, Using either an algebraic or geometric integrating scheme to perform
the analysis

c. Printing the data after preliminary data processing

d. Interpolating and plottirg the processed data curves.
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3. The discussion begins with a brief description of data acquisition
techniques. This 1s followed by a description of the five programs including
sample problems which demonstrate the use of the programs. Finally, a description
is given of some of the primary subprograms. These are listed separately since
they can be used as building blocks for other programs., The discussion is
supplemented by several illustrations, many of which are the actual computer
outputs fram the execution of the computer programs. The majority of the data
curves are output from the CALCOMP 570 digital incremental plotter, A description
of the data units for the programs has also been included in paragraph 33.
Appendix A contains a glossary of symbols and terms used in the report.

o™
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Chapter 2

1

DATA ACQUISITION TECHNIQUES

L. A brief description of spherical coordinates and the techniques used in tie
: data acquisition will assist in the description of the parameters used in the data
; analysls and the computer programs. Figure 1 i1llustrates the relatlionship between
rectilinear and spherical coordinates. An arbitrary point R (or vector) in space
1 can be defined in terms of the spherical coordinates of R, 6, and ¢ representing
the radial distance, the colatitude and the (easterly) longitude respertively. 3
‘ (6 is sometimes called the polar angle, and ¢ is sometimes called the dihedral i
? angle.) Appendix A gives the definitions of these coordinates in terms of

rectilinear coordinates.

‘ 5. Figure 2 shows a simplified diagram of the test setup for conducting the
3 measurements of a satellite's magnetism, The degrees of freedom illust:ated in
the figure are defined to correspond to the spherical angles, The rotation axis,
provided by a horizontal turntable, allows a variation in colatituds. The tilt ;
axls, provided by a gimballing fixture attached to the satellite, allows a 4
1 variation in longitude. Analog curves are made of the sensor reading versus the :
colatitude for a fixed set of positions of longituds, The curves are recorded 1
while the satellite 1is in a zero magnetic field environment., Notice that the
sensor in Figure 2 1s radlally aligned, This setup generates analog curves
representing the normal component of the satellite magnetism along great circles of

S Ry G e

el i e

longitude as shown in Figure 3,

; 6. Let the parameter NO represent the number of curves of data to be recorded.
E These curves correspond to measurements along great circles spaced (180/NO) degrees
apart. Figure 3 shows an example when NC = 6, There will be six analog curves of
data corresponding to the six great circles. TFigure 4 shows the initial positions

for each of the curves.
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7. As a gample problem consider the system of dipoles illustrated in Figure 5.
The first curve begins with the +z-axls directed at the magnetic sensor and the
+y-axis pointed up. The turntable is rotatel clockwlse. Prior to beginning each
succeeding curve, the satellite 1s tilted (180/NO = 30) degrees around the z-axis.
Figure 6 shows a typical set of six data curves for the sample problem, Each curve
is marked with 25 date points. The parameter N1 is used to represent the number of
data points per curve (N1 = 25 in the example). The points are spaced (360/(N1-1))
= 15 degrees apart. The value at each measurement point is automatically
recorded via analog-to-digital (A/D) conversion equipment in the satellite

meagurements.,

8. Notice that the curves in Figure 6 do not all begin with the same value,
although, theoretically they chowid., This is typical of the type of measurements
that are made on satellites. The curves represent relative measurements instead of
abgolute measurements. It would be possible to insure that the curves all begin
with the same value, but 1t would not necessarily be the correct valus.
Nevertheless, the data analysis 1s independent cf the starting value of each curve.
Therefore, no concern is given to this problem in the acquisition of the data.

9, Reference (a) lists several considerations in the determination of the
parameters for the data acquisition including NO, N1, and the radius Rl of the

measurement sphere. The considerations include:
a. The smoothness of the data curves
b. The analysis method
¢. The accuracy of the measuring apparatus
d, The round-off errors of the computing machine.

The parameters are not all indspendent. They must be determined by making certain
compromises. For instance, the data curves can be smoothed by increasing Rl
(1.e., by increasing the minimum distance between the surface of the measurement
sphere and the satellite), but this will decrease the relative accuracy of the
data, Also, the total number of data points NO°N1 may be increased, but computing
machine errors will become more significant. An increase in the number of data
points will also increase the computing time and data storage.

St

e
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10, Experience has shown that the dipole moment for most problems can be
approximated accurately enough if the following conditions hold:

a. Let the minimum distance between the surface of the measurement sphere
and the satellite be at least half the maximm diameter of the satellite to insure
sufficient smoothness of the data curves. For example, the radius of the
measurement sphere for a body with maximum diameter of 50 inches, and centered at
the origin, should be at least 50 inches.

b. Let NObe = 8 and N1 be > 16 to insure that the errors from the
numerical approximation are smaller than the measurement errors. (This condition

can be relaxed in cases where the satellite magnetism gives simple sine-cosine
curves. In the past, NO = 4 and N1 = 25 has been sufficlent in many cases.)

c. Use the simplest analysis procedure (i.e., the geometric integrating
scheme) for the preliminary analysis since it is relatively accurate and sasy to

use.

5/6

e TR NPT Sy

3 PO oy




T T T TRy Y Rt L

NOLTR 73-191

Chapter 3
MAIN PROGRAMS

PROG SA1024 AND SA20

Introduction

11, The programs labeled SA102, and SA2024 (Appendices B and C) are BASIC and
FORTRAN IV versions, respectively, of the basic one-term data analysis prccedure.
The procedure 1s simple because only the dipole moment term is computed for the
satellite magnetism and only the approximate method of numerical integration is
used, The programs print the measurement data and the computed dipole moment in
rectilinear and spherical coordinates. They also print data which assists in
calibrating and aligning the compensating dipoles. The major difference between
the two versions 1s the manner of entering the data. The BASIC version is set up
to take the data from DATA statements. The FORTRAN IV version accepts data from
paper tape or from a data file.

Input Data
12. The data is entered into the programs in the order of the following

definitions:
a, First line of data or data card - format: I
NO - The number of curves of data (NO is even and < 16,)

N1 - The number of equally spaced data points per curve from O thruv
360 degrees colatitude (N. is odd and < 33, The first and last
data points for each curve correspond to measurements at
0 degrees colatitude.)

IR - The parameter that determines whether or not to read the data
from a data file. IR # O means that the data will be read from
the data file DAT02, (This parameter is used only with the
FORTRAN IV version.)
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b, Second line of dats_or data card - format: (2F6,1)

Rl - The radius of the measurement sphere in inches
C6 - The value of the calibration signal (C7-C8) in gamma

c. Third line of data or data card - format: (I5)

N2 - The parameter that determines whether or not to print the
measured data (N2 # O means that the data will be printed.)

d. Measurement data - format: (9F6.1) (These cards are deleted if
IR # O,

C7 - The static measurement with the calibration signal
C8 - The static measurement without the calibration signal
F(I,J) - The measurement data for I = 1,2,++¢,N1 and J = 1,2,°**,NO,

The input data cycle may be repeated by starting with new data NO, N1, and IR
again, The program execution is terminated by setting the new value for NO equal

to zero.

Qutput Data
13. The programs SA1024 and SA2024 then perform a numerical integration of the

equation

m <
0= (3-m3/8n)f/ £(8,9) sin 8 d8 dg (1)
00

for the dipole moment D, The numerical equation is

_ 3 NO N1
D ~ (3+R1°/8n) ng 1—21 F(I,3)*m(8(I),¢(J))*X(I) (2)

where

D= (Dl, D,, D3) is in gauss-centimeters3

F(1,7) = £(o(I),9(J)) is in gammas
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sin (6(I))*cos(p(J))
n(8(I),p(J)) =]sin (8(I)) sin(@(J))

cos (8(I))
8(I) = 2n(I - 1)/(N1 - 1) 1is the colatitude (turntable angle) (3a)
¢(J) = n(J - 1)/NO 1s the longitude (tilt angle) (3b)
X(I) = [sdn(n/(2'm1 - 2))]2/(2'NO) IfI=1or M (48)
= [sin(n/(2°M1 - 2))]2/NO if IT= (N1 +1)/2 (4b)

|sin(8(I))*sin(n/(N1 - 1))|/(2°N0) if I # 1, (N1 + 1)/2, or N1, (4¢)

14. Next, the dipole moment is transformed into spherical coordina*es as

D 22 2\
D= (D] + D+ D3)
9 = taez.n-l [(Di + Dg)%/DB]-lSO/n = colatitude
$ = tan™" (Dz/ D) *180/m = longitude

15, Finally, vhe program computes the values of two compensating magnets: one
in the xy-plane and one along the z-axdls, The value of the dipole field at one
meter 1s also given to assist in charging the magnets to the desired values.

Sample Problem for SA2024

16, Appendix D contains the input and output data for SA2024 using the sample
problem represented in Figures 5 and 6, The file BN2024, which is used for
execution, 1s the binary verslon of SA2024. Thls example was executed in two
different ways on the INTERCOM time-sharing system using the CDC 6400 computer.,
The information typed in at the teletype terminal hag been underlined. Duta tapes
representing ths measurement data are generated by the A/D equipment during the

measurements. The program automatlcally reads the data in the proper format;

converts the data into gammas using the calibration parameters Cé, C7, and C8; and
adjusts the data so that the beginning and ending poilnts for all the curves have
nearly the same value. The result of this procedure is visible in the data
print-out on page 2 of Appendix D.
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17, The first method of duta input in Appendix D) wus from the file DAT024.
This complete problem required only the first thrce lines of data, The measurement
data was read into the file from un eurlier execution of SA2024. (The program
execution automatically generates the file DATOR4 if the duta 1s reud in from i
tape.) The remaining lines of data initlated the computation of the solution to
the same problem except thut the measurement datu was read in from a data tape.

PR T S
e “ama
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18, The program SA3024, listed in Appendir E, allows a more complete anelysis
to be performed on the data. The program can be used to compute the dipole,
quadrupole, and higher order muliipole terms., Also included is an optional method 1
of integrating the data and a data plotting option., The optional integrating ;
scheme is labeled "exact" although it is exact only for magnetic data from a finite
number of multipole magnets centered at the origin., This scheme is discussed in
more detail in paragraphs 25 through 32 and in reference (a). )

PROGRAM SA3024 : . j

19, The program uses several special subprograms to perform such tasks as:

a. The computation of spherical harmonic coefficients for magnetlc field
data

b. The generation of values of associated lLegendre polymomials and
Schmidt functions

e s

c¢. The inversion of an n x n matrix

d. The interpolation and plottinre of data,

Scme of these subprograms will be discussed in more detail in later sections,

Input Data
20, The method for entering the data into 5A3024 is very similiar to the

method for SA2024 with several additional varilables. The data is entered in the
following order:

i T s et i N b B

a. First line of data or data card - format: (6I5)

NO - The number of curves of data (NO is even and = 16,)

10
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N1 - The number of equully spaced data points per curve from

0 thru 360 degrees colatitude (N1 is odd and < 33, The first and

lust data points for each curve correspond to measurements at
0 degrees colatitude.)

NH - The highest degree spherical harmonic term to be computed from
the data (NH = 1 fr dipoles, 2 for quadirupoles, etc.)

IR - The parameter that determines whether or not to read the data
Jrom a data file (IR # C -eans that the data will be read from

the file DAT024.)

IP1 - The parameter that determines whether or not the data is to be
interpolated and plotted (IP1 # O means that the data will be
interpolated and plotted.)

IW - The parameter that determines which integrating scheme 1s to be
used (IW = O means that ths exact, algebraic scheme is to be

used. )

Second line of data or 3ata card - format: (3F8.4)

Rl - The radius of the meusurement sphere in inches
CV - The value of the calibration signal (CS-CZ) in gamma

PY - The scale factor (gammas/inch) for ths y- axis if the data is to

be plotted (If PY = 0.0 a factor will be computed from the data,)

Third 1ine of data or data card - format: (I5)

IP2 - A parameter that determines whether or not to print the measured

data (IP2 # O means that the data will be printed.)

Meagurement data - format: (9F6.1) (These cards are deleted if
IR # 0.

CS - The static measurement with the calibration signal

CZ - The static measurement without the calibration signal

11
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F(I,J) - The measurement data for I = 1,2,¢¢*,N1 and J = 1,2,+¢:,NO,

The input data cycle may be repeated by starting with new data NO, N1, °*°¢, etc.
The program is terminated by setting the new value for NO equal to zero.

Output Data
21, The program then computes the spherical harmonic coefficients Aﬁ and Bﬁ

based on the equation

for n = O,1,e¢¢,NH and m = O,1,°**,n, The numerical equivalent of equation (5) ic

SBBB

n 2
! (2n + 10" %/ (4ne(n + 1) ]jf 8p) *Py (cos 9>33§3§$
00

*sin odede (5)

=5

NO N1

o= [ s 0m™ Y ne o+ D] L R(1,0) B cos(e(D)) -
B, J=1 I-1
COS(mﬂp(J))f.
.isin(mow(J)) Y1) (6)

where
n is the degree of the spherical harmonic term

m 1s the order of the spherical harmonic term

Pg(cos(e(l))) is the Schmidt function of degree n and order m. (These functiors

are discussed in Appendix K.)

Y(I) is the array of weighting factors for the numerical integration. (Cne of
two methods can be used to determine the values for Y(I) depending on the

parameter IW,)

2n(I - 1)/(N1 - 1) is the colatitude (turntable angle)

o]
—~
—
-
1t

n(J = 1)/N0 is the longitude (tiit angle).

6
™
e
——
L1l
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Equation (5) gives an expansion for the function f£(8,y) as

2 4]

n
£o,9) = Y (n+1)/(R27 * 2) 3 [Agcos(rrxp) + B:sin(nxp)] P::(cos(e)). (7)
n=0 m=0

If the expansion is written as f£(8,p) = 3, £ (3,9) then each f (8,p) represents
the field from a multipole mugnet of deg?gg n. (Reference (a) contains more details
on the expansion of the tuanction f£(¢,0).)

22, In general, the coefficients A: and BI:: can be stcred as two-dimensional
arrays A(n,m) and B(n,m), or, they may be packed into single-~dimensional arrays as

2
A(m+ 1+ (n" + n)/2) = 1\2 for n = 0,1,2y°*+ and m = 0,1,*°*,n

B(n + (n” - n)/2) = Br: for n = 1,2,°¢+ and m = 1,2,¢°*,n.

23. "he program SA302 is set up to conserve storage by computing and storing
the coefficients for only one degree term at a time (i.e., for each fixed n) using
the equations

Alm+ 1) = Afll for m = 0,1,¢**,n

B(m) = B’r’l‘ for m= 1,2, *°n. (8)

It should be noted that the coefficient Ag s corresponding to the monopole moment,
would be zero if the numerical integration was exact and the data F(I,J) was
correct, If the monopole moment i1s not zero, then the data is corrected prior to
being printed and prior to further analysis. Also for n =1 and Y(I) = X(I) it

can be shown that Egqs. (1) (or (2)) and (5) (or (6)) are identical if

=
H

t
i

o
)
1
w
o

(9)

-
I
Ho

24, The dipole moment D = (Dl’ D2
in the program in both rectilinear and spherical coordinates. The program is also

, D3) 1s computed and printed out separately

13
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set up to compute the quadrupole moment QiJ for 1 and § =1, 2, and 3. This is
computed and printed separately if NH > 2, The computation is based on the
equations

Q; =3 'Ag - Ag ' (10a)
Qpp = = /3 A2 - A (100)
_ 0 _ :

Q33 = 2A2 (ioeo) Qll + Q22 + Q33 = O) (100)
&, = /T B2 (104)

o

_ el
Q23 =/3 B, (10f)
Q = Q;u for 1 and j = 1, 2, and 3. (10g)

The higher degree coefficients for n = 3,4,¢**,NH are printed only in their
spherical form,

Integrating Schemes
25. The program SA3024 is set up to allow a choice between two numerical

integration schemes for Eq. (6). These two schemes are based on two different
methods for determining the weighting factore {Y( I)}. The factors actually
correspond to the elements of spherical surface area assigned to each data point
F(I,J). Therefore, a geometrical description of the two different sets of
welghting factors will provide some insight into the two methods of numerical
integration, Figure 7 shows an sxample of the areas assigned to a data point for
both integrating methods. The dashed lines are boundarles for areas when the
parameter IW # O. The areas have values {X(I)} as defined in Eq. (4). (The
weighting factors {¥(I)} in Eq. (6) are then set equal to {X(I)}.) The dashed 1ines
are equally spaced between data points with equal intervals of longitude (= n/NO)
and equal intervals of colatitude (= 2m/N1), The weighting factors {Y(I) = X(I)}
are easler and faster to calculate by computer than the factors when IW = 0. The
resulting integration has good numerical stabllity and gives fairly accurate

answers.

Ty g TN N,
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26, If the parameter IW = O, then a more exact integrating scheme is used.
The weights {Y( I)} are still elements of area on the surface of the unit sphere,
and they still consist of equal intervals of longitude. But the intervals of
colatitude (dotted lines in Figure 7) are varied to make certain surface integrals
exact if the integrand consists of a finite number of spherical harmonic terms.
The highest degree term that can be contained in the integrand (or highest degree
magnet that can be represent by the datu F(I,J)) and still be exact depends on the

parameters NO and N1, The relationship of NO and N1 to the degree n and order m of

the coefficients Aﬁ and Bx: are

NO2m+ 1
(11)
Nlzd4dn+1,

Since m < n, as seer in Eqs. (5) and (7), the coefficients for a multipole magnet
of degree n can be approximated accurately only if

NCzn+1

N1 > 4n + 1.

This means that the dipole terms (n = 1) require that NO = 2 and N1 = 5. The
followlng table shows values for several multipole magnets.

TAELE 1 EXAMPLES OF MINIMUM VALUES OF NO AND N1

n NO: N1=
1 (dipole) 2 5
2 (quadrupole) 3 9
3 4 13
4 5 17
5 6 21
6 il 25
7 8 29
8 9 33

27. It should be noted here that setting NO, N1 = 2, 5 will not generally give

the dipole term very accurately unless the higher degree terms are all zero. For
example, conslder a problem which has only dipole and quadrupole terms, and assume

15
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that only the dipole coefficlents are to be computed. Then NO, N1 : 3, 9 is
required to insure the accuracy of the dipole computations, In general a problem
contains an infinite nuuber of terms. The only cases when the expansion in Eq, (7)
contains a finite number of %‘erms are when there are only a pure dipole (of
insignificant length), a quadrupole, and/or, a finite number of other multipole
magnets which are centered at the origin. An offset dipole or a dipole of
considerable length (or any offset multipole magnet of degree n) requires an
infinite number of terms for representution by Eq. (7). In general, it 1s best to
gelect !0 and N1 as large uas pogssible with

HO = (ML - 1)/2, (13)

28, For IW = 0, the welghts Y(I) are composed of two factors D(I) and C, i.e.,
Y(I) = D(I)*C (14)

for I =1,2,°**,N1 and J = 1,2,*+*,NO (see reference (a)). The constant C
represents the equally spaced intervals of longitude with value

= n/NO. (15)

The factors D(I) are determined by solving a set of simultaneous linear equations.
The equations can be set up in a number of ways since the factors are symmetric
with respect to the values of colatitude of § = n/2 and @ = n. The method used in
SA3024 1s to set up and solve the equations for factors representing the intervals
between 8 = O and n/2, and then to use symmetry to determine the other weights.
This procedure involves two different cases based on the odd integer N1. Figure 8
shows the intervals of colatitude for two examples; one when (N1 + 1) is a multiple
of 4 and one when it 1s not. The examples give rise to two different sets of
equations for the factors D(I) as follows:

a. Equations when (I + 1) is a multiple of 4

Let
8(I) = 2n(I - 1)/(N1 - 1) (3a)
N3 = largest integer <= (N1 + 3)/4 (16)
16
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Then .

for I = 2,3,°*",N3
p[im + 3)/2 - 7] = p(J) (17¢)

for J = 2,3,¢°+,13
D(N1 + 1 - J) = D(J) (174)

for J =1,2,°*,(N1 - 1)/2

1t

p[(m + 1)/2] = 2p(1) (17e)

b. Equations when (N1 + 1) is not a multiple of 4
Let 8(I) and N3 be defined as in Eqs. (3a) and (16). Then

N
f 2D(J) + D(N3 + 1) = 2 (18a)
J=1

‘: i (2T - 2)

¢ zg.@os 8(J)) *D(J) = 1/(21 - 1) (18b)
J=

for I = 2,3,°++,N3 + 1. Equations (17¢), (174), and (17e) remain unchanged.

29, In Egs. (172) and (17b) the I and J "subscripts" can be considered to
designate the row and column for the coefficient matrix for N3 simultaneous linear
{ equations in N3 unknowns. This also follows in Eqs, (18a) and (18b) except for an
’ (N3 +1) x (N3 + 1) system of linear equations. The system of equations for two

examples are given below.
30, Let N1 =7, Then (N1 + 1) = 8 is a multiple of 4, and

N3=2s (7+3)/4L=2.5
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8(1),0(2) = 0, 60°
cos(60) = 1/2,

Therefore Eqs. (17a) and (17b) imply that

1
1/3.

D{1) + D(2)
D(1) + D(R)/4

These equations are satisfied by

D(1) = 1/9, D(2) = 8/9.

The remaining equations, (1léc), (16d), and (16e), imply that
D(1), D(2), ***, D(7) = 1/9, 8/9, 8/9, 2/9, 8/9, 8/9, 1/9.

31, Next, let N1 = 9, Than (N1 + 1) = 10 is not a multiple of 4, and
N3=3s(9+3)/4: 3.0
0(1),8(2),8(3) = 0, 45°, 90°

cos(45°%) = 1//2.

Therefore, Eqs. (18a) and (18b) imply that

2D(1) + 2D(2) + D(3) = 2

D(1) + D(2)/2 = 1/3
D(1) + D(2)/4 = 1/5.
The solution to these equations 1is

D(1), D(2), D(3) = 1/15, 8/15, 4/5.

The remaining equations, (17¢), (17d), and (17e), imply that
D(1), D(2), -+, D(9) = 1/15, 8/15, 4/5, 8/15, 2/15, 8/15, 4/5, 8/15, 1/15,

32. Reference (a) gives a more theoretical approach to the methods of
integration and describes another method for determining the factors D(I) using a

] polynomial approach. This method was compared with the direct inversion of the
3 Eqs. (16) and (17). The results indicated that the direct inversion method was
; more stable numerically and took less computer time.

1 18
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Units

33, All the progrums use a mixed system of units, In general, the mugnetic
units are in the cgs system, e.g., the magnetic field intensity H (£(8,9) in Eq. (5)
1s in gammas (10-5 oersted with a permeability of one). The units for a multipole
moment of degree n is pole-centimetern, e.g., monopole moment is in poles, dipole
moment 1s in pole-centimeters (em), quadrupole moment is in pole-cmz, The unit
pole 1s equivalent to gauss-cm2. The unit of length is inches. This 1s used for
the measurement radius Rl and the multipole position vectors P (for programs
SAL024 and SA5024). The unit of gammas is used for the data array F(I,J) and for
the error parameters EG and ED (for programs SA402, and SA5024). Any parameters

that represent angles or angular errors are in degrees.

Sample Proble.ns
34. Appendix F contains the input and output data for SA3024 using the same

measurement data as in SA2024 (Figures & and 6). The file BN3024, used in the
execution, is the binary version of SA3024. Only the first 16 binary records
(subprograms) are used when executing via INTERCOM., As before, the example was
executed in two different ways on the INTERCOM System, The problem was also
submitted to BATCH processing via INTERCOM to demonstrate a method of using the
plotting option of the program. One of the two identical plots that resulted from
the BATCH processing i1s included in Figure 9. Although the example in Section II
of Appendix F was set up to use the GOULD electrostatic plotter, the data was later
plotted on the CALCOMP to simplify reproduction problems.

35. Several characteristics of the analysis can be observed by comparing
Appendices D and F and Figures 6 and 9. The first characteristic is the data
processing., This involves the conversion of the data units and the adjustment of
the curves so that all the curves begin and end as near as possible to the
beginning and ending of the first curve. The curve adjustment can be observed by
comparing the print out of the data tape on page D-~1 and the datva printed on
page D-2. The first points of curves 1 and 2 on the data tape are -504.3 and
-902.8. After the data processing these points are -504.3 and -502.8. Another
data adjustment in SA3024 has to do with the monopole moment. Since the monopole
moment should be zero if the d~%a has absolute accuracy, then the data is adjusted
to produce this condition., The procedure involves the computation of the monopole
moment, and then, the subtraction of the magnetic field of the monopole component
from the data. A comparison of the data printed on page D-2 and on pages F-2 and

19
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F-3 show a difference of ubout 24 gammag. This appears as the monopole moment of
14.3°*° printed on page F-2, The data plotted in Figure 9 represents the data that
would have been measured if absolute accuracy was attainable,

36, An example of the method of printiug out the spherical harmonic
coefficients is shown on page F-°, For each nth degree harmonic term, the
coefficlents A" for m = O,1,¢*+,n ure printed on the first line, and the
coefficients 82 for m= 1,2,+°+,n are printed on the second line., It should be
noted that in the definitions related to Eqs. (5) and (6), the coefficients Ag and
Bﬁ are coetficients for the Schmidt polynomials and not for the assoclated
Legendre polynomials, The relationship 1s discussed in more detail in Appendix X.

PROGRAM SA4024

Introduction

37. The program SA4024, listed in Appendix G, was devised to assist in the
conduct of error studies relating to the analysis of satellite magnetism., The
program is set up to generate data simulating measurements around a specified
system of multipole magnets representing the satellite. Simulated errors can be
inserted into the generated data to represent position and instrumentation errors.
The generated data is written on a data file (DAT024) in the same format as the one
used in the data acquisition procedures with the punched paper tape. The data file
is generated in a form that can be used with programs SA2024 and SA3024{. The
program SA4024 also contains the plotting option,

38, Speclal subprograms used in the program perform such tagks as:

a, The computation of the magnetic field vector at a remote location

from a multipole magnet

b, The generation of values of assoclated Legendre polynomials and
Schmidt functions

¢, The interpolation and plotting of the magnetic data.

Input Data
39. The input data for SA4024 varies considerably from the preceding programs

since it includes specifications for multipole magnets and data errors. The data
is entered in the followlng order:

20
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Firgt line of data or data card - format: (4I5)

NO - The number of curves of data (NO is even and = 16,)

N1 - The number of equally spaced data points per curve from O thru 360
degrees colatitude (N1 is odd and < 33. The first and last data
points for each curve correspond to measurements at O degrees
colatitude.)

NH - The total numter of different harmonics (degrees) of multipole
magnets to be considered

IP - The parameter that determines whether or not the data is to be
interpolated and plotted (IP # O means that the data will be
interpolated and plotted.)

Second line of data or data card - format: (5F8.4)

Rl - The radius of the measurement sphere in inches

EG - The error (in gamma) to be randomly inserted into the data to
represent instrumentation inaccuracies

EA - The angular error (in degrees) to be randomly inserted into the

data to represent measurement position errors

ED - The constant error (in gammas) to be inserted into the data to
represent offset in the instrumentation. (This will be analyzed

as monopole moment.)

PY - The scale factor (gammas/inch) for the y-axis if the data is to
be plotted. (If PY = 0,0 a factor will be computed from the

data,)

Third line of data or data card - format: (7A10)

F9 - The format for reading and printing the spherical coefficients
A(I) and B(I), e.g., (1H ,7E10.4)

Al of the following data is repeated "NH" times:

21




d, Next line of data or data card - format: 21

NN - The harmonic number (degree) of the multipole data being read in
(NN = 1 for dipoles, 2 for quadrupole, etc.)

NM - The number of multipoles with harmonic number NN

The following data is repeated "NM" times:

e. Next lines of data or data cardg - format: (3F8.4)

P - The position vector (in inches) of the multipole in rectilinear
' coordinates (P, Py, P,.)

f. Next lines of data or data cards -~ format: F9

|
' A(I) -~ The spherical coefficients Ak~ 1 for the multipole of degree

NN
NN where I = 1,2,***,NN + 1 (The order of the Ith coefficient
is I - 1,)
g. Next lines of data or data cards - format: F9
B(I) - The spherical coefficients BﬁN for the multipole of degree NN
where I = 1,2,°*+ ,NN (The order of the Ith coefficlent is e )re
f (The relationshipsbetween spherical and rectilinear coefficients for dipcles and

quadrupoles are given in Egs. (9) and (10).)

OQutput Data

40. The program computes data representing measurements of the specified
There are NO curves of data computed, each containing

system of multipole magnets.,
For instance assume

N1 data points. The computations are made by using Eq. (7).
that the system has Ni{ multipoles of degree N and that fnj(egw) represents (as in
Eq. (7)) the normal component of the magnetic field from the jth multipole of

degree N. Then the total magnetic fileld fn(e,¢) for all multipoles of degree N is

T e e

™
£.(8,¢) = j§ fnj(e ) (19)
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If NH 18 the total number of different degrees for the system of multipoles then
the normal component of the magnetic field for the total system is

£(8,9) = %:H £ (6,0) . (20)
N=1
The program sets up the data array F(I,J) in this manner., (F(I,J) is defined in
Eq. (2).) The data array is then written onto the data file DAT)24. The file can
then be used with either program SA2024 or program SA3024. A data tape can also
be made of this file by listing the file under SYSTEM/BASIC with the tape punch
unit on,

Sample Problems
{1, SAL024 was used to compute the data for several examples, These are

1isted in Appendix H and in Figures 10 through 24, BN402/ is the binary version of
SA4024. When executing the program via INTERCOM only the first nine binary records
are used, The first section in Appendix H presents the input and output data for
the sample problem illustrated in Figure 5. The instrumentation inaccuracy was
assumed to be +1.0 gamma by setting EG = 1,0, The positlons for the measurements
of the data were considered to have inaccuracies of +0.2 degress (EA = 0.2)., The
set of data curves were assumed to be offset by 25.0 gammas (ED = 25.0). The data
curvas representing the simulated measurements are listed on page H-3. Section II
of Appendix H contains the data file DATO24 that was generated with this data in a
format 1ike the data tape. In Section III of Appendix H the sample problem and
several other problems were submitted to BATCH, The resulting data was nlso
plotted. The data in Figure 10 for the sample problem is nearly identicai to the
data in Figure 9. The remaining examples in section III represent the irdividual
and combined data for the first eight spherical hermonics (n = 1,2,¢¢++*,8) of the
sample problem., These will be discussed in more detsil in later paragraphs.

42, SALO02) was also used to show data curves for individual components of
dipole and quadrupole momente, These are included in Figures 11 through 24, A
small diagram is also included on each figure to illustrate the particular
component that is represented by the curves. Curves are shown for components in
both spherical and rectilinear coordinates according to Eqs. (9) and (10).

23
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PROGRAM SA50

Introduction
43. The program SA5024, listed in Appendix I, was devised to simplify the

error studies., It performs functions similiar to both programs SA3024 and SA4024,
i.e., SA502, is both a data generation and a data analysis program., A system of
multipole magnets is specified in the input data to represent the satellite as in
SAL02,. Since the data is analyzed as it 1s generated it is not written onto a
data file as in SAL024. However, the program does include the plotting option when
executing in the BATCH mode. Also, the integration option discussed in paragraphs
25 through 32 1is included. The primary subprograms in SA502, perform most of the
functions already described in the sections on SA3024 and SAL024.

Input Data
44. The input data for SA5024 resembles the input data for the program SA4L024

since it consists mostly of specifications for multipole magnets and data errors.
The deata is er.‘ered in the following order:

a. First line of data or data card - format: (7I5)

NO - The number of curves of data (NO is even and < 16,)

N1 - The number of equally spaced data points per curve from
0 through 360 degrees colatitude (N1 is odd and < 33, The first
and last data points for each curve correspond to measurements

at O degrees colatitude.)

NH1 - The total number of diffsrent harmonics (degrees) of multipole
magnets to be considered

NH2 - The harmonic number (degree) representing the highest degree
spherical harmonic term to be computed from the data (NH2 = 1
for dipnles, 2 for quadrupoles, etc.)

IPl - The parameter that determines whether or not the data is to be
interpolated and plotted (IP1 # O means that the data will be

interpolated and plotted.)

b s s s,
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IF2 - The parameter that determines whether or nct the magnetic data
is to be printed (IP2 # O means that the data will be printed.)

IW - The parameter that determines which integrating scheme is to be
used (IW = O means that the exact, algebralc acheme is to be

used.)

Second line of data or data card - format: (5F8.4)

Rl - The radius of the measurement sphere in inches

EG -~ The error (in gammas) to be randomly inserted into the data to

represent instrumentation inaccuracies

EA - The angular error (in degrees) to be randomly inserted into the

data to represent measurement position errors

ED - The constant error (in gammas) to be inserted into the data to
represent offset in the instrumentation (this will be analyzed us
mo.opole moment)

PY - The scale factor (gammas/inch) for the y-axis if the data is to
be plotted (if PY = 0,0 a factor will be computed from the data.)

Third line of data or data card - format: (7A10)

F9 - The format for reading and printing the spherical coefficlents
A(I) and B(I), e.g., (1H ,7E10.4)

A1l of the following data is repeated "NH" times:

d.

Next line of data or data card - format: (2I5)

NN - The harmonic number (degree) of the multipolc date being read in
(NN = 1 for dipoles, 2 for quadrupole, etc.)

NM - The number of multipoles with harmonic number NN

The following data is repeated "NM" times:

25



Ry

T £ e Gy w—

NOLTR 73-191

e. Next lines of data or data cards - format: (3F8.4)

P - The position vector (in inches) of the multipole in rectilinear
coordinates (F_, P, P )
x 'y Tz

f. Next lines of data or data cards - format: F9

A(I) - The spherical coefficients Aﬁﬁl for the multipole of degree NN
where I = 1,2,¢¢¢,NN + 1 (The order of the Ith coefficlent is

I-1.)

g. Next lines of data or data cards - format: F9

B(I) - The spherical coefficients BiN for the multipole of degree NN
where I = 1,2,¢+¢,NN. (The order of the Ith coefficient is

1.).

(The relationships between spherical and rectilinear coefficients for dipoles and
quadrupoles are given in Egs. (9) and (10).)

Output Data
45, Initially, the program SA5024 computes the simulated measurement data as

in Eqs. (19) and (20). Next, th: spherical harmonic coefficients are computed

according to Eq. (6). The program also computes the exact dipole moment from the
multipole specifications, This value is compared with the dipole moment computed
from the simulated measurement data, The percent error is printed as part of the

output data,

Sample Problems
46, Appendix J contains the input and output data for several problems using

SA5024., As in the other programs the binary version of ©A5024 is the file BN5024.
When executing the program via INTERCOM, only the first 15 binary records are used.

In the first sectlon of Appendix J an analysis was conducted of the sample problem
illustrated in Figure 5. The parameters EG, EA, and ED were all set to zero
(page J-1) so that no simulated errors were inserted into the data,

47. Figure 25 shows elght curves of the computed data for the three dipoles in
the sample problem. Actually, 16 curves, each containing 33 data points, were used

in the computations (based on Eq. (12) and Table 1), These values for the
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parameters NO and N1 aliowed the computation of the spherical harmonic coefficlents
The program SA4L024 was used to compute

for the first eight multipole components,

eight data curves for each multlpole component to demonstrate the type of curves

reprosenting each component, These are pregsented in Figures 26 through 33.

were also combined and plotted by SA4024.

of spherical harmonic approximation.
curve 1s the original datu from the sample problem,
component, Curve 3 represents the combinuation of dipole and gquadrupole components.,

Figure 35 contains four curves.,

Figure 34 displays the combined data,
The first data curve (xz-plane) was chosen to further demonstrate the characteristics
The first

Curve 2 represents the dipole

Curve 4 represents the combination of the first eight multipole components,

convergence of the series in Eq. (7) 1s not obvious from the coefficients computed
Table 2 summarizes the peak coefficients and the data
Although the magnitude of the peak coefficient increases
In fact,

in Section I of Appendix J.
peaks for each degree n,
with increasing n, the data peak (magnetic field at 96 inches) decreases.
the first eight multipole components account for about 97 or 98 percent of the
original data curves, This indicates that higher degree components are relatively

insignificant.

TABLE 2

PEAK DATA FOR THE MULTIPOLE COMPONENTS OF THE SAMPLE PROBLEM

Degree n ( Max {IAﬁ], |B§|}) Data Peak (for 8 curves)

Q=msn
1 10% 13.79
2 -.9472X107 803.79
3 .2341x10%° 839,34
4 .1545%1017 367.51
5 ~.2812X10%4 211,03
6 +.4533X10%0 189,44,
7 +.3541x10" 57,51
8 -.4517x10%° 35.47

Criginal 1817.94

Sum of Components 1786,61

48, Section II of Appendix J demonstrates the procedure for submitting the
program SA5024 for BATCH execution,

_7

The data specifies two problems consisting of
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offset dipoles. In the first problem the dipole is aligned parallel to the x-axis
and offset along the x-axis, The resultant curves are presented in Figurs 36,

The second problem i1s a dipole aligned parallel to the y-axis and offset along the
x-axis, These curves are presented in Figure 37. A small diagram is included in
each figure to demonstrate the geometric configuration,

49. A small error study was made to demonstrate the relationship between the
accuracy of the dipole analysis; the parameters NO, N1, and Rl; and the measurement
errors (represented by EG and EA)., The sample problem in Figure 5 was again
selected. This example has a resultant dipole moment of 1000 gauss-cmB, but the
magnetic field from this dipole component is embedded in the large field from
quadrupole and higher terms. Curve 2 in Figure 35 demonstrates this condition.
Also Table 2 shows that the peak of the dipole curves is only 13.79 gammas ocut of a
total of 1817.94 gammas for the total system. Table 3 contains a summary of the
study. Several different values of NO, N1, IW, Rl, EG and EA were used., The
indications are that increasing R1 doesn't help much if EA and EG are too large.
Also, there isn't much improvement in the accuracy of the computations when using
the exact integration schemo (i.e., when setting IW = 0). Probably the most
significant otservation is that the parameter EA, representing position errors, has
a much greater effect on the analysis accuracy than the parameter EG, representing
ingtrumentation errors.
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Chapter 4

PRINCIPAL SUBPROGRAMS

INTRODUCTION
50, The programs described in the preceding sections were constructed to

utilize several algorithms which were incorporated into functions and subroutines.
These include algorithms for computing the spherical harmonic coefficients,
computing the vector magnetic field emanating from a multipole magnet, computing
the associated Legendre Polynomials, computing the Schmidt polynomials, and
interpolating and plotting data curves., The subprograms have been code in a
manner which makes them ugeful as bullding blocks for other programs. They are
discussed separately in the following paragraphs,

SUBROUTINE AMPMNT
51. The subroutine AMPMNT is used to compute the spherical coefficients Aﬁ

and Bﬁ for the data array F(I,J). The computation is based on Eq. (6). The
subroutine is constructed to compute the coefficients for only one degree at a

time. The calling sequence is
CALL AMPMNT (NO, N1, N, R1, F, P, A, B)
where the arguments are defined as follows:
a. Input
NO - The number of curves of data

N1 - The number of equally spaced data points per curve from
O through 360 degrees colatitude

N - The degree of the spherical harmonic ccefficients to be computed

Rl - The radius of the measurement sphere in inches

31
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F(IJ) - The measured data for IJ = I+ (J - 1)*N1, I =1,2,+°+,N1, and .
J =1,2,*+¢,NO (The data is stored in a one-dimensional array k

to conserve storage, 1.,e.,, equating the one-dimensional array ‘

to the two-dimensional array in Eq, (6) gives F(IJ) = F(I,J).) 1

P(I) - The first "(N1 + 1)/2" weighting factors Y(I) in Eq. (6), i.e.,
P(I) = Y(I) for I =1,2,°**,(N1 + 1)/2,

b. Output i

* A(M+ 1) - The spherical coefficients AI: for M = 0,1,2,+++,N (see 1
Eq. (8))

B(M) - The spherical coefficients BI: for M= 1,2,3,°**,N (see Eq. (8)).

52. There are several other subroutines that are used to support AMPMNT in
addition to the standard FORTRAN IV machine routines. AMPMNT internally calls a
subroutine labeled POLVAL which in turn uses functions labeled SPNM, PNM, and ANF.
-i These routlnes are used to compute the appropriate values for the Schmidt
polynomials Pfll(cos(e(I))) in Eq. (6). Also, the weights P(I) are set up externally

i i S et 000 St e s e e, i i s

: by special subroutines before being input to the AMPMNT subroutine. This process {
requires the use of subroutines labeled WGT1l, WGT2, WGT3, and GAUSEL. Listings of i
all of these subroutines are included in Appendix I. }

SUBROUTINE AMPFLD
53. The subroutine AMPFLD is used to compute the magnetic field at the point

_ R from a multipole magnet of degree n centered at the point P. The magnet is
specified in terms of the spherical harmonic coefficients Aﬁ and Bﬁ. The calling

L gsequence is
CALL AMPFLD (R, P, N, A, B, F)
where the arguments are defined as follows:

a. Input

R(I) -~ The rectilinear coordinates (in inches) of the point at which
the field is to be computed (R(1) = x-coor., R(2) = y-coor.,

3 and R(3) = z-coor.)
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P(I) = The rectilinear coordinates (in inches) of the center position
of the multipols magnet (P(l) = x-coor., P(2) = y-coor., and
P(3) = z=-coor,)

N - The harmonic degree of the multipole magnet

A(M + 1) - The spherical coefficients A: for M = 0,1,2,***,N (see

m
B(M) - The spherical coeficients B, for M = 1,2,°** N (see Eq. (8))

b, Qutput

F(I) - The total magnetic field in rectilinear coordinates (Hx = B,
Hy = F(2), and H, = F(3)).

54. The subroutine computes tha total magnetic fleld vector for a single
multipole magnet. The computations are based on relationships that are similiar to
Eq. (7) except that only a single multipole magnetic (N is fixed) is considered.
Also, the subroutine gives all three rectilinear components of the magnetic fleld
instead of just the radial component. The relationships are presented below using
terminology that can be found in references (b) and (c). Let ﬁl be defined as the
vector from the magnet to the point R, i.e.,

R

L =R-F (1)

where R and P are as defined above. Next, let
Ry = (Rys 9» 0) (22)

be the representation of ﬁl in spherical coordinates where R’.L is the vector length,
9 is the colatitude, and ¢ is the longitude relative to a system of coordinates
centered at the multipole position. Now, define an orthonormal set of vectors

T, 8, and ¢ in spherical coordinates as

r=cosqsin® 1+ sing sing j +cos o Kk (23a)

§=cos<pcoseI+sinq;cosef-sinef (23b)

¢ =-sing 1+ cosgJ (23c)
33
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where I, 7, end k represent the orthonormal set of vectors along the x, y, and
z-axis, respectively (see Figure 1), It can be seen that

r=k/R. (24)
Then, the total field vector En(ﬁ) for the nth degree multipole 1s given as
H (R) = H(R)r + H _ (R)8 + Hw(Rkp (25)
where
H (R) = [(n + 1)/1‘?._‘_n + 2] zn: (AR cos mp + B® sin nrp)Pm(cos 9) (26a)
nr = n n
_ n
Ho(R) = (l/R,_Ln S (AI; ces mgp + stinn:p[(}ﬁ Pﬁ * Lcos o)
m=0
(26b)
-m cos © Pﬁ(cos 8)/sin 6]
n
Hmp(ﬁ) = (l/Rln + 2) n§) m(AI; sin mp - Bf: cos nrp)Pﬂ(cos 8)/sin 8. (26¢)

The coefficient c‘r’l‘, in Eq. (26b), has the value

C:: = [(n -n)(n+m+ l)]% for (m > 0)
= [n(n + l)/2]% for (m = 0).

Aso, the terms which have sin 6 as a divisor are computed using the following
identities:

znPn,m(cos 9)/sing = (n-m+1)(n-m+ 2)Pn+l,m-1(°°° 8) + Pn+l,m+1(°°s 8)
(27)

for (m > 0)

= 0 for (m = 0)

Pﬁ(cos ) = {2 %2_-:_3_:'}% Pn’m(cos 8) for (m> 0) (
28)

P_ ~(cos 8) for (m = 0),

n,0

34
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The function Pn m( cos ) represents the associated Legendre polynomial of degree n

and order m, Pf:(cos 8) represents the Schmidt polynomial of degree n and order m,

These polynomials are discussed in more detail in Appendix K. The radial component
fn(qa,e) of the magnetic field at the point R is computed from the total field

ﬁn(ﬁ) as

£ (@e) = B () - W@ - B2, (29)

| 55. The subroutine AMPFLD uses several external subprograms including SPNM,
PNM, ANF, SPCOOR, and SUM. These are listed in Appendix I, The subprograms SPNM,
PNM, and ANF are used to compute the Schmldt and assoclated Legendre polynomials,
The subroutines SPCOOR and SUM are used in mathematical operations with vectors.
SPCOOR transforms a vector from rectilinear to spherical coordinates. SUM
multiplies vectors and scalars, and then, adds the products.

FUNCTIONS PNM, SPNM, AND ANF

56, The function subprograms PNM, SPNM, and ANF are used in the generation of
values for spherical polynomials, PNM computes the value of the associated
Legendre polynomial Pn’m(x) of degree n and order m at the point x for |x| < 1,
(If m = O the subprogram computes the value of the regular Legendre polynomial.)
SPNM converts this value into the Schmidt function Pz(x) . ANF simply computes the
factorlal value for the integer N. Let y represent a variable used in a computer
f progra.. 'hich is to be set equal to a polynomial value. Then the calling sequence

for the subprograms is defined as follows:

PNM(N,0,X) for N2 0 and [X| <1

= Pn(x) is written as Y
y=P m(x) 1s written as Y = PNM(N,M,X) for N2 0, M2 0, and |X| s 1

| W= Pf:(x) is written as Y = SPNM(N,M,X) for N2 0, M2 0, and |X| < 1,

The factorial subprogram is used ag follows:

y = n! is written as Y = ANF(N) for N =2 O,

The development and use of these subprograms was reported in more detail in an
internal technical note. This is included in Appendix K.

35
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SUBRO DATPLT
57. The subroutine DATPLT is used to interpolate and plot the curves of data.

It 1s written to make use of either the GOULD electrostatic plotter or the CALCOMP
570 pen plotter., Most of the data curves in the enclosed figures were plotted on
the CAPCOMP plotter., Figure 38 shows a set of data curves plotted on the GOULD
plotter. These correspond to the curves in Figure 6. The routine sets up x and
y-coordinate arrays for the magnetic fleld data F(IJ). A plotting symbol (the
curve number) 1s used to mark each data point along the data curves. The data is
plotted as magnetic field versus the angle of colatitude as shown in Figure 6. The
calling sequence 1s

CALL DATPLT (NO, N1, F, YDIST)
where the argument list is defined of follows:
NO - The number of curves of data
N1 - The number of data points per curve

F(1J) - The array of data curves for IJ = J + (I - 1)°N1;
J=1,2,°**,N1; and I = 1,2,°**,NO

YDIST - The value in gamma to be used for one inch of the y-axis (If
YDIST = 0.0 the subroutine PKY is used to determine a suitable
scale for the y-axis.).

58. The subroutine uses the exterral subprograms CALCML, FNCTON, and PKY for
execution, CALCMl is contained in special plotting packages of subprograms that is
in the NOL subroutine library. There are two separate packages that can be loaded
when using the subroutines DATFLT and CALCMl. The package labeled GOULD1 is loaded
when pletting with the GOULD electrostatic plotter. The package labeled CALCML is
loaded when plotting with the CALCOMP plotter. Also a tape (TAPE99) must be loaded
with the CALCMl package. The subprograms FNCTON and PKY are listed in Appendix I.
FNCTON computes the Fourier coefficients for each curve of data., These are used to
increase the point density of the data to be plotted to one point for every five
degrees of colatitude. This turns out to be 12 points per inch on the graphs or a
total of 73 points per curve. The subprogram PKY is used to determine a suitable
scale for the y-axis if YDIST is zero,

36
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SUBROUTINE FNCTON

59. The subroutine FNCTON i1s used to perform a Fourler analysis on a single-
dimensioned array of data that represents the values along a curve at equally
spaced intervals, The program is used primarily for interpolating data. The
calling sequence is

CALL FNCTON (F, N, C, CO, PHI, N2, DEV)
where the argument list 1s defined as follows:

a. Input

F(I) - The data array representing the values of the curve at N
equally space values 8(I) = 2n(I - 1)/N for I = 1,2,¢¢*,N

N - The number of data points
b. Qutput
C(I) - The array of Fourier amplitudes for I = 1,2,°°*,N2
CO - The zero degree Fourler amplitude
PHI(I) -~ The array of Fourier phase angles for I = 1,2,¢++,N2
N2 - The number of terms in the approximating Fourier series

DEV - The maximum difference between the data points and the curve
defined by the Fourier series.

60, The coefficients are obtained by the followling equations:

N

Cy = (/M) X F(I) (30)
1=
N

51, = (/M) Y, F(I) *+ sin [2nj(1 - 1)/N] (31a)
=L
N

c1; = (/M) T F(D) * cos [2nj(1 - 2)/n] (31b)
=

B7
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¢y = (31‘1 + 01J)~‘ for § # N/2
(32)
= (8132 + Cli)f/Z for j = /2

PHI, = tan™(C1/51) (33)

for J = 1,2,°**,N/2 + 1,
61. This results in the approximation

N2

F(I) = Cy + j};l ¢, sin [2ri(1 - 1)/N + PHIJ] for I = 1,2,+*°N, (34)

Any other set of N! equally spaced values which begin at 6(1) = O can be computed
by substituting N' in place of N in Eq. (34). DATPLT uses the value of 72 for N!.

e
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Chapter 5
CONCLUSIONS

62. The computer programs presented in this report are part of a major effort
at NOL to develop and improve magnetic test procedures on spacecraft., The effort
involves the development and evaluation of both data ucquisition and data analysis
procedures. The Sphericul Field Coil Facility at NOI. is being instrumented to
handle both the acquisition and analysis of the test data. The proposed
specifications for the instrumentation were presented i reference (d). More
detailed specifications for the data acquisition and anulysis system were forwarded
to NRL as an enclosure to reference (e). The fucility is scheduled to be
operational by the beginning of fiscal year '75. A technical report describing
the facility should be publlished shortly thereafter.

63. There are other analysis projects to be completed. (me is the compilation
and publication of a reference manual containing the mathematical equations for
dipole and quadrupole computations., This will simplify slide-rule calculations
which are made during testing. Another project involves the conduct of a more
elaborate error analysis using the computer programs described above, This will be
necessary to evaluate the minimum detectable dipole moment under several different

conditions,

64. It should be noted here that there are several other methods for
estimating the dipole moment of spacecraft., The most effective method to use in
any particular case depends on a number of things including the size of the
spacecraft, the availability of a gimballing system, the desired accuracy of the
compensation, the complexity and permanence of the spacecraft!s magnetism, etc,
The procedure bused on the gpherical harmonic analysis of the spucecraft!s magnetiam
has proven to be both fast and accurate for Nil satellites. Many of the tests have
been cumpleted in less thun four hours and with an accuracy which allows dipole

moment compensation of all but about 100 out of 6000 gauss—cmB.

39

et WA L e i 80

T w5



25

T T PR e T e

- — EDTIY o PRy e s g Te T . TR T T e— Jrmmn— e i

NOLIR 73-191

' R=f.lz % ‘:’2 +=2.’ /2
x = Rsin@cos¢ -1 2. 2.1/2
y =Rsin@sing 8=tan [(x+y) "7/z]
=R -1
z cos§ ¢ =tan (x/y)

FIG. 1 ILLUSTRATION OF SPHERICAL POLAR COORDINATES
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Y (ROTATION AXIS)

SPACECRAFT

Z (TILT AXIS)

SENSOR A

(INITIAL POSITION)

FIG. 2 DEGREES OF FREEDOM FOR MEASUREMENTS
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ROTATION
Al
—r— -
% | - (180/n5)
TILT.
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|
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CURVE 1{ 2 3
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| 3180/ NO). 4-180/No) 180/NO)”
)
o (-
X . &
X s ‘ i
CURVE 4 5 )
Notes:

1. The diagrams are viewed from the sensor position,
2. The turntable rotation 1s clockwise.
3. Each curve begins with +z-axls directed at the sensor.

FIG., / SATELLITE INITIAL POSITIONS FOR NO = 6
(Viewed from sensor position)
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DIAGRAM OF DIPOLES

DIPOLE 2\
DIPOLE 3 ,

amp— X <M amp— X
DIPOLE 1 DIPOLES 2 & 3 | DIPOLE 1

PARAMETRIC VALLES

P

PARAMETER COMP, pircle

1 2 3
POSITION X 3.000 ~21.000 G250
VECTOR Y 0, 000 36,373 -36, 373
74 0. 000 0. 000 0. 000
D (A(2)) 31,000, -15,000, ~15,000,
DIPOLE b (K1)

MOMENT y 0. 25,980, -25,980.
D, (A()) 0. 0. 0.

FIG. 5 ILLUSTRATION OF SAMPLE PROBLEM
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INTERVAL OF GREAT CIRCLE OF
LONGITUDE DATA POINTS

DATA POINTS
INTERVAL OF i R L
COLATITUDE
""""" NOTE; THE
DASHED LINES
ARE EQUALLY
SPACED BETWEEN
DATA POINTS
IN BOTH
COLATITUDE
AND LONGITUDE.
BOUNDARY OF SURFACE
COMMON BOUNDARIES AREA ELEMENTS
FORBOTH IWF¥ O FOR IW # O. [AREA = X (1) ]
AND IW =0,

tssecsa tos BOUNDARY OF SURFACE
AREA ELEMENTS
FOR IW =0O. [AREA =Y (I)]

FIG. 7 EXAMPLE OF SURFACE AREA ELEMENTS ASSIGNED TO DATA POINT
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FIG. 9 DATA CURVES FROM SA3024 FOR SAMPLE PROBLEM
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